A CHARACTERIZATION OF CERTAIN MORPHIC TRIVIAL EXTENSIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions, minimality and idempotents of certain semigroup compactifications

در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...

15 صفحه اول

The $w$-FF property in trivial extensions

‎Let $D$ be an integral domain with quotient field $K$‎, ‎$E$ be a $K$-vector space‎, ‎$R = D propto E$ be the trivial extension of $D$ by $E$‎, ‎and $w$ be the so-called $w$-operation‎. ‎In this paper‎, ‎we show that‎ ‎$R$ is a $w$-FF ring if and only if $D$ is a $w$-FF domain; and‎ ‎in this case‎, ‎each $w$-flat $w$-ideal of $R$ is $w$-invertible.

متن کامل

Trivial Extensions of Local Rings and a Conjecture of Costa

This paper partly settles a conjecture of Costa on (n, d)-rings, i.e., rings in which n-presented modules have projective dimension at most d. For this purpose, a theorem studies the transfer of the (n, d)-property to trivial extensions of local rings by their residue fields. It concludes with a brief discussion -backed by original examplesof the scopes and limits of our results. ∗This project ...

متن کامل

Graded self-injective algebras “are” trivial extensions

Article history: Received 20 March 2009 Available online 9 June 2009 Communicated by Michel Van den Bergh Dedicated to Professor Helmut Lenzing on the occasion of his seventieth birthday

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2011

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s021949881100480x